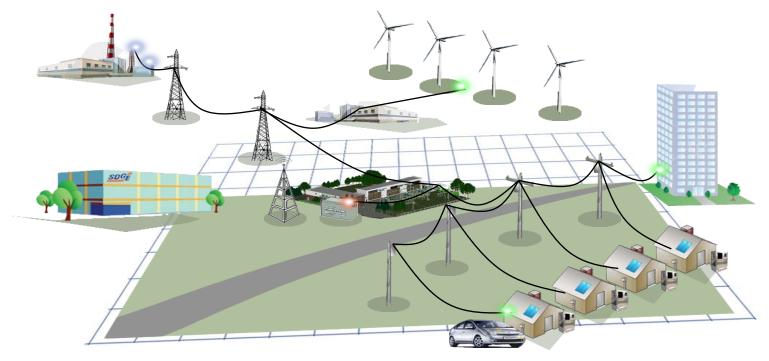


SDG&E RDSI Project Overview

SDG&E Borrego Springs Microgrid Demonstration Project


DOE Peer Review

November 3, 2010

SDG&E Borrego Springs Microgrid Project Summary

Utilize advanced technologies to integrate and manage distributed resources within the Smart Grid

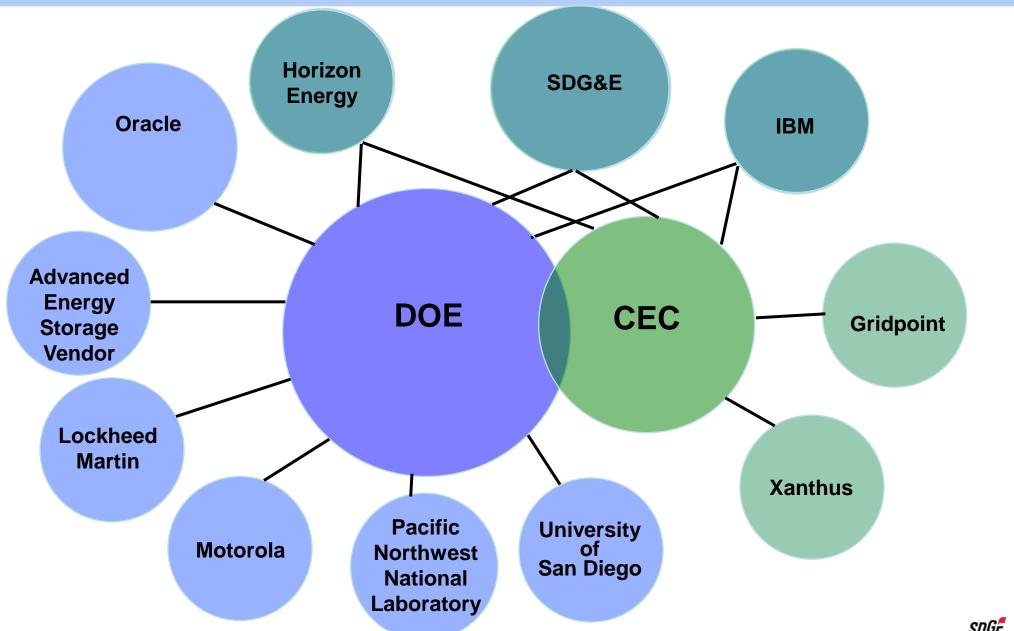
Budget:	\$15.2M (\$4.1M SDG&E, \$7.5M DOE, \$2.8M CEC, and \$0.8M partners)
Benefits:	•Reduce the peak load of feeders and enhance system reliability •Accommodate various generation and storage configurations
2010 Goal:	Successfully resolve DOE audit, negotiate contracts for remaining partners, and engage/inform Borrego Springs community

Department of Energy

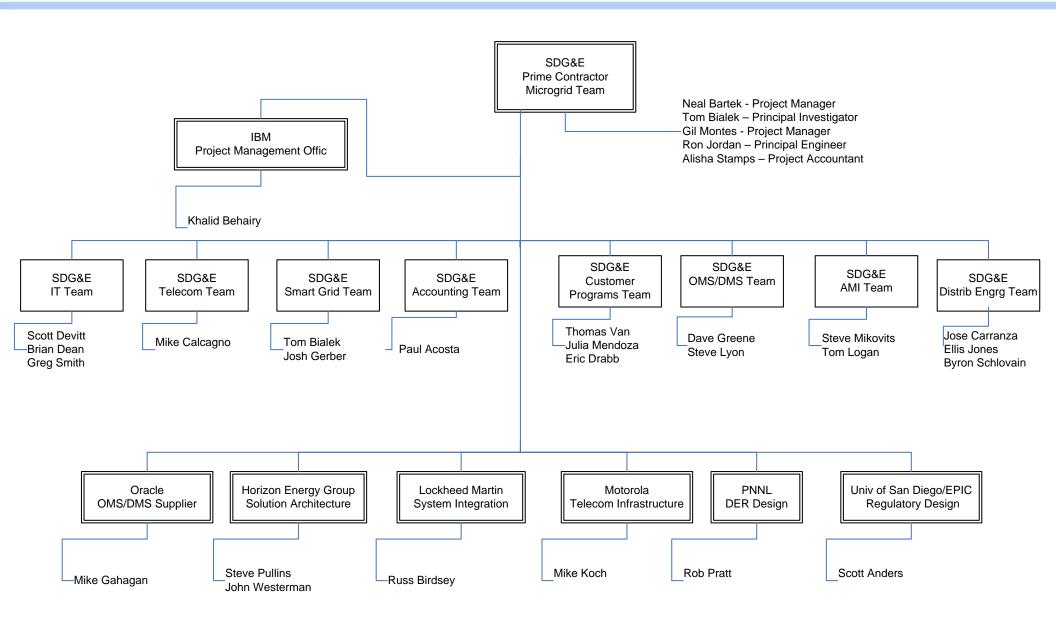
Project Overview

Project Benefits

- Allow more power to be delivered through existing infrastructure and reduce the need to build more in the future
- Increase in the reliability and security of the grid by adding elements that make the grid more stable and reconfigurable.
- Allow Utility to utilize and control customer-owned resources
- Optimize the design of circuit operations for microgrid capabilities given DG, demand response, automated response, and other advanced tools

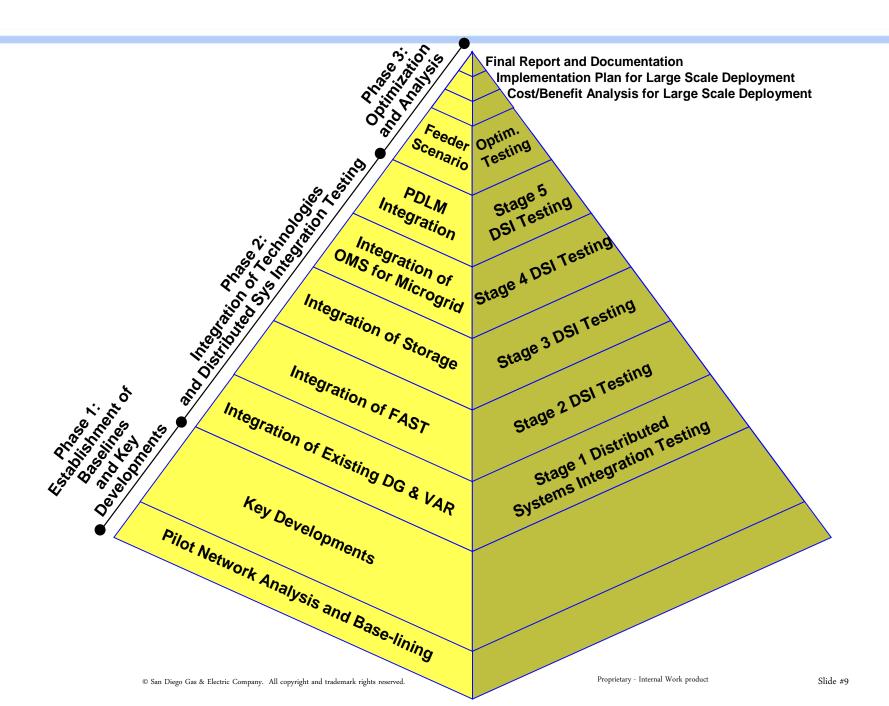

Project Objectives

- Achieve > 15% reduction in feeder peak load
- Demonstrate capability of Volt-Amps-Reactive (VAr) management
- Develop a strategy and demonstrate:
 - Integration of AMI into Microgrid operations
 - Self-healing networks through the integration of Feeder Automation System Technologies (FAST)
 - Integration of an Outage Management System/Distribution Management System (OMS/DMS) into Microgrid operations
 - Intentionally island customers in response to system problems
 - Information/tools addressing the impact of multiple DER technologies

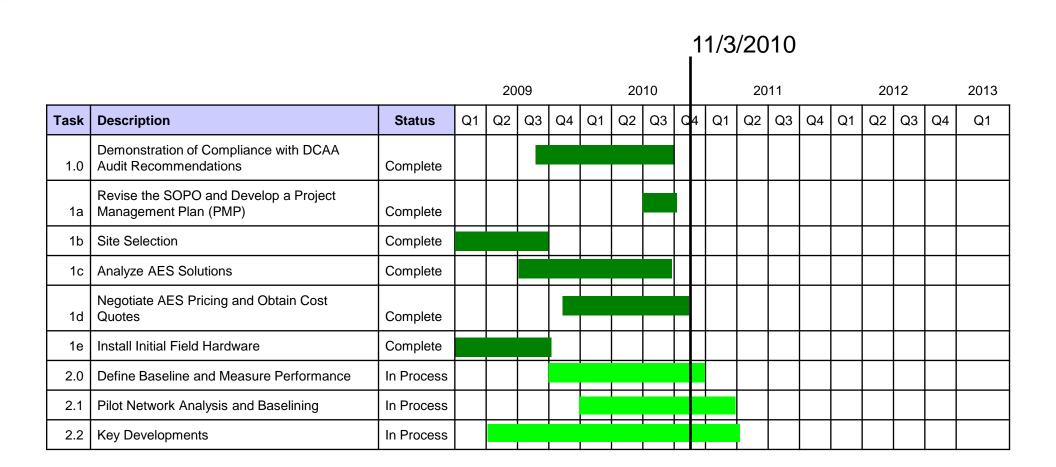

Project strategies

- Design and demonstrate a smart grid that incorporates sophisticated sensors, communications, and controls in the following ways:
 - Intelligently incorporate solar power generators on homes and businesses into the electrical delivery system.
 - Enable coordinated Demand Response (DR) programs whereby heavy electrical use during peak demand periods can be moderated to prevent electrical supply emergencies.
 - Integrate and control multiple distributed generation and electrical energy storage devices to operate the grid in a more cost-effective and reliable manner, benefiting customers and electrical rates.
- This project will proactively identify and apply leading-edge technologies to improve the security and reliability of electricity supply and to lower costs to consumers.

Project Partners



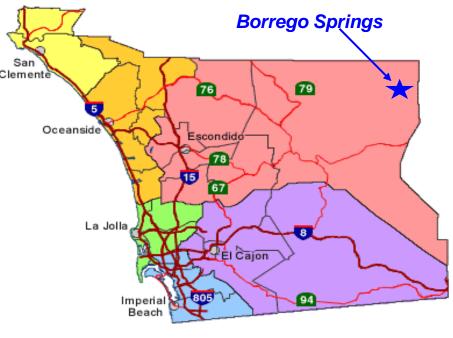
Project Management


Slide #8

Microgrid Project Overview

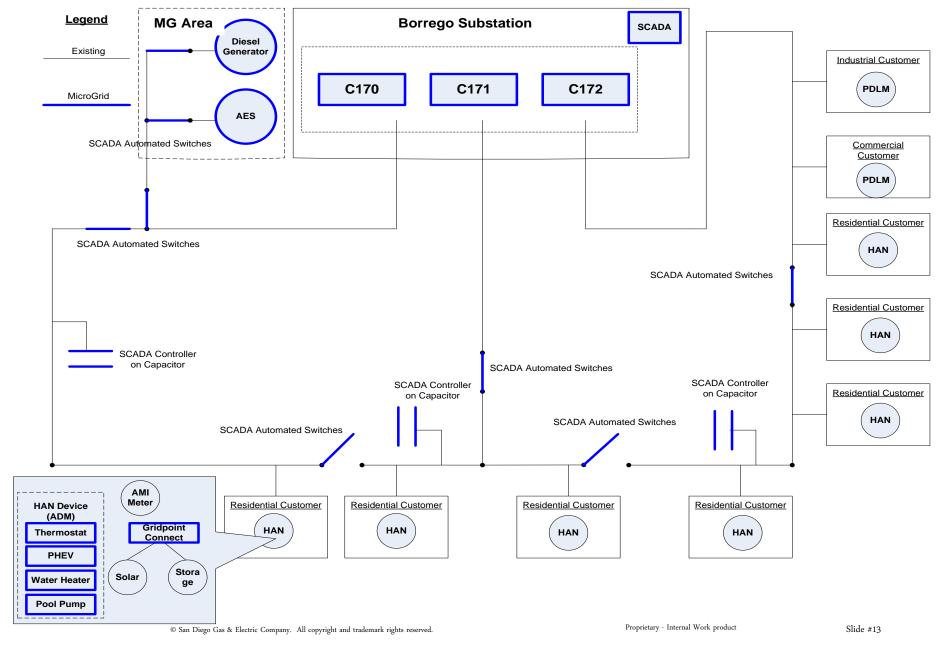
Project Status

Phase I: Establishment of Baselines & Key Developments



Site Selection – Borrego Springs, CA

Key Strengths:


- High concentration of customer-owned solar generation
- Potential to realize advanced reliability enhancements
- Opportunity to demonstrate self-sufficient circuit
- Extendable to service territory

Proprietary - Internal Work product

Borrego Substation Conceptual Circuit Illustration

Phase II – Integration of Technologies and Operational Testing

										₁ 1	1/3								
				2009 2010								20)11		2012				2013
Task	Description		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	. Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
3.1	Integration of Existing Distributed Energy Resources and VAr Compensation	In Process																	
3.2	Stage 1 Distributed Systems Integration (DSI) Testing	Pending																	
3.3	Integration of Feeder Automation System Technology (FAST)	In Process																	
3.4	Stage 2 DSI Testing	Pending																	
3.5	Integration of Advanced Energy Storage (AES)	In Process																	
3.6	Stage 3 DSI Testing	Pending																	
3.7	Integration of OMS/DMS for Microgrid Operations	In Process																	
3.8	Stage 4 DSI Testing	Pending																	
3.9	Integration of Price-Driven Load Management (PDLM)	In Process																	
3.10	Stage 5 DSI Testing	Pending																	
3.11	Feeder Optimization Scenario Testing	Pending																	

Distributed Energy Resource (DER)

Utility-owned distributed generation will simulate customer-owned renewable generation

- Identified DER requirements
 - two 1.8 MW Tier 1 Caterpillar 3516DITA diesel generators owned by SDG&E
 - 200 hours per generator per year
- Filed application with Air Pollution Control District of San Diego County (APCD) for a Stationary Source Permit
 - Negotiating contract to retrofit generators with advanced emissions control to meet required Tier 4 standards
- Filed application with County of San Diego for Variance from County Noise Ordinance
 - To likely require a wall to be built to help reduce noise
- Developed requirements for remote control capabilities
 - Negotiating contract to retrofit generators with advanced controls

Advanced Energy Storage (AES)

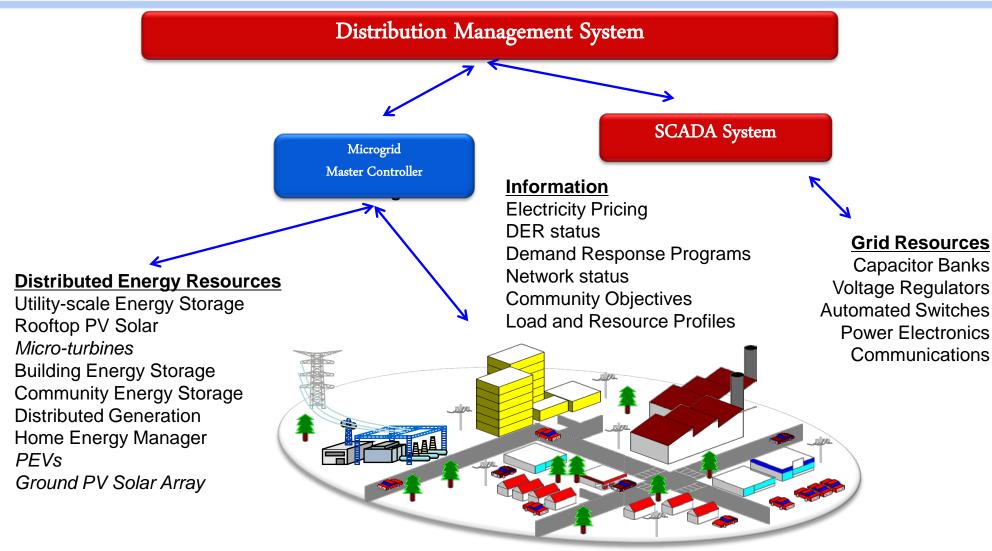
Advanced Energy Storage will supplement Distributed Energy Resources

- Identified AES System requirements in conjunction with EPRI & Sandia
 - 1.0 MW Power Output
 - 6.0 MW-Hr of Energy
 - Potential future applications
- Developed RFP and issued to nine (9) vendors
- Received six (6) proposals
- Conducted best & final review with two (2) vendors
- Negotiating Terms and Conditions with preferred vendor
- Conducting RFI to assess state of battery technology
 - 25-50kW, 1-3 hours of storage (120/240v single phase)
 - 100-300kW, 3 hours of storage (120/208v or 277/480v 3-phase)

Feeder Automation System Technologies (FAST)

Automated switching technology will improve reliability by enabling circuit operations without human intervention

- Identified objectives of FAST
 - Programmed switch operation on Cir 170 (including tie switches) will automatically isolate faulted segments and restore service
 - All operations will be done based on real-time loads
- Borrego circuits modified for FAST Installation


Microgrid Controller & OMS/DMS

Microgrid Controller technology will integrate with the Distribution Management System while balancing the distributed energy resources and energy demand in the Microgrid control area

- Modeled use cases & business processes
 - Presented Use Cases at Microgrid Symposium in Vancouver, BC
 - Shared Use Cases with Xanthus Consulting for work on IEC 61850
- Mapped detailed requirements to functional requirements
- Received approval from Information Security
- Investigating vendor options for Design/Build
- OMS/DMS system testing
- Discussions with other RDSI projects
- Literature review

Microgrid Controller

National Energy Technology Laboratory

Price-Driven Load Management

Leveraging Advanced Metering Infrastructure (AMI) and Home Area Network (HAN) devices, we will be able to influence/manage customer loads. Pricing signals will alter customer usage, Demand Response will be used during "Reliability Events".

- Completed contracts with Gridpoint
- Collaborating with internal SDG&E departments to develop plan to present "one-face" to customers
- Developing customer participation plan
- Developing Timeline for Customer Communications
- AMI rollout complete

Phase III – Data Collection and Analysis

				11/3/2010															
				2009 2010					2011						2012			2013	
Task	Description		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q 4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
4.0	Collect Data	Pending																	
5.0	Data Analysis	Pending																	
5.1	Cost/Benefit Analysis for Large-Scale Deployment	Pending																	
5.2	Implementation Plan for Large-Scale Deployment	Pending																	
6.0	Reporting, Briefings and Technical Presentations	Pending																	
6.1	Final Report and Documentation	Pending																	

California Energy Commission Project Overview

Smart Grid Project (CEC)

Participants:

SDG&E, Horizon Energy Group (HEG), Xanthus, GridPoint

Project Goals

- Integrate <u>utility</u> and <u>customer-based</u> energy resources, including carbon and non-carbon-based energy sources
- Enhance the management of intermittent renewable resources, including the impact of resources from sustainable communities
- Identify and evaluate the key technical and operational issues with designing, implementing, and managing an integrated energy portfolio of utility and non-utility interconnected resources
- Improve power reliability and quality via utility asset optimization

Smart Grid Project (CEC)

Project Objectives

- Assess the ability to achieve at least a fifteen percent reduction in feeder peak load through the integration of multiple, integrated DER on a SDG&E feeder
- Demonstrate capability of Volt-Amps-Reactive (VAr) electric power management
- Develop a strategy and demonstration of information integration focused on both security and overall system architecture.
- Develop a strategy and demonstrate the integration of AMI into smart grid operations;
- Demonstrate the capability to use automated distribution control to intentionally island customers in response to system problems
- Develop information/tools addressing the impact of multiple DER technologies including:
 - control algorithms for autonomous DER operations/automation that address multiple DER interactions and stability issues
 - coordination and interoperability of multiple DER technologies with multiple applications/customers.
- Demonstrate Programmable and Controllable Thermostats to achieve Demand Response goals within the smart grid.

Issues and Challenges

- Contract Management
- Security Cyber and Physical
- Network Communications Infrastructure
- Internal/External Communications
- Customer Participation
- Regulatory and Tariff Impacts
- Permitting
- Synchronization with other SDG&E projects (AMI, OMS/DMS)
- Development of Microgrid Controller

Q & A